Problem 1)
$$K_a = \frac{[H^+][C_6H_5COO^-]}{[C_6H_5COOH]}$$

- 1. Make a RICE table for a weak acid like the one in the lecture slides for a weak acid
- 2. Assume $x \ll 0.180 \text{ M}$
- 3. $[H^+] = [C_6H_5COO^-] = x$
- 4. Solve for x
- 5. Calculate pH from [H⁺]

Problem 2)
$$K_a = \frac{[H^+][C_6H_5COO^-]}{[C_6H_5COOH]}$$

- 1. Calculate moles of C₆H₅COOH
- 2. Calculate moles of $C_6H_5COO^-$
- 3. * Divide by the total volume to get new concentrations of C_6H_5COOH and $C_6H_5COO^-$
- 4. Solve for [H⁺] using the equilibrium expression
- 5. Calculate pH from [H⁺]

Problem 3)
$$K_a = \frac{[H^+][ClO^-]}{[HClO]}$$

- 1. $[H+] = [Clo^-] = 10^{-pH}$
- 2. Solve for [HClO]

Problem 4)
$$K_a = \frac{[H^+][CH_3CH_2COO^-]}{[CH_3CH_2COOH]}$$

- 1. Calculate moles of CH₃CH₂COOH
- 2. Calculate moles of CH₃CH₂COO⁻
- 3. * Divide by the total volume to get new concentrations of CH $_3$ CH $_2$ COOH and CH $_3$ CH $_2$ COO $^-$
- 4. $[H+] = 10^{-pH}$
- 5. Solve for K_a

Problem 5)
$$K_a = \frac{[H^+][CH_3CH_2COO^-]}{[CH_3CH_2COOH]}$$

- 1. You already know moles of CH3CH2COOH from problem 4.
- 2. You also know moles of $CH_3CH_2COO^-$ from problem 4.
- 3. Calculate moles of NaOH added.
- 4. New moles of acid = initial moles of acid moles of NaOH
- 5. New moles of base = initial moles of base + moles of NaOH
- 6. Calculate new concentrations of $\mathrm{CH_3CH_2COOH}$ and $\mathrm{CH_3CH_2COO^-}$ using new moles and total volume
- 7. Plug these into the equilibrium expression to calculate $[H^{+}]$
- 8. Calculate pH.

Lab Report Part 3: The first table (on page 80) is like Post-lab problem 3, but you are solving for K_a instead of [HA]. The second and third tables (on page 81) are just like Post-lab problem 4.

Lab Report Part 4: In the unbuffered solution, you do a dilution problem (3 mL to 38 mL) to calculate the new $[\text{H}^+]$ or $[\text{OH}^-]$, and then calculate pH. When HCl or NaOH is added to the buffered solution, the calculations are like Post-lab problem 5.

* - You can actually skip all of the starred steps and just use the number of <u>moles</u> of HA and A in the equilibrium expression instead of calculating the new concentrations. HA and A are in the same volume, so the volume cancels out. An equally valid form of the equilibrium expression is

$$K_a = \frac{[H^+] \times \text{moles of A}^-}{\text{moles of HA}}$$