Experiment 7

Synthesis and Analysis of those Same Green Crystals what we made before Spring Break

Part 3: Spectrophotometric Determination of Iron Content

CH 204 Spring 2009

Dr. Brian Anderson

Two weeks ago

Redox Chemistry

Oxidation — loss of electrons

Reduction — gain of electrons

Balancing redox reactions

Titration with KMnO₄

Today's lab in a nutshell

Parts 2 and 3 of the procedure in the lab manual.

- 1) Mix up a series of 5 standards by diluting from a stock solution
- 2) Measure the absorbance of each of the standards
- 3) Make a calibration curve by plotting Absorbance vs Concentration

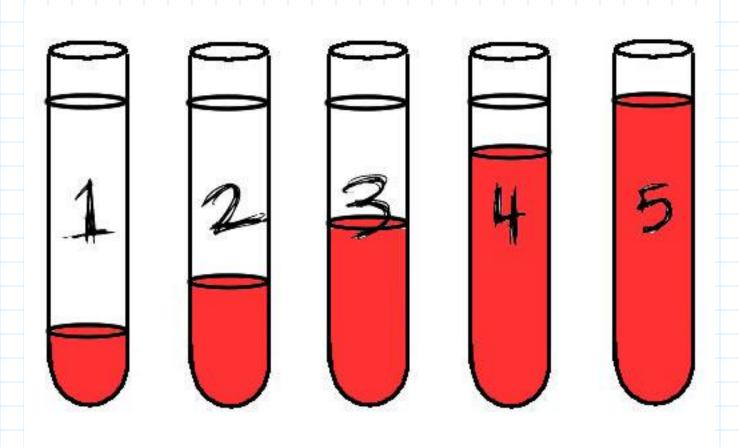
The iron stock solution in the hood is 0.0191 grams of Fe per liter

Part 2 — make up the standard iron solution

Get 10 mL of the iron solution from the hood, and pipette
 5 mL into a 25 mL volumetric flask.

That's a 1 to 5 dilution of the original concentration.

- 2. Add 1 mL of hydroxylamine, NH₂OH
 2 mL sodium acetate, and
 8 mL 1,10 phenanthroline
- 3. Fill the volumetric flask up to the line with deionized water using a dropper pipette, then mix it, cap it off and let it sit for 20 minutes for the reaction to occur.


Part 3 — Make Individual Standards

1. Get five small test tubes and label them 1, 2, 3, 4, 5. Write directly on the glass with your marker.

Using a plastic syringe, add that many milliliters of the orange solution that you prepared in Part 2 to each test tube.

Using the plastic syringe again, fill each test tube to 5 mL total by adding 4, 3, 2, 1, and 0 mL of deionized water to test tubes 1-5 respectively.

5,000 words about Part 3

Calculating Final Concentrations

To find the actual concentration of each of the test tubes, we have to multiply by the dilution factor for each one:

Original Concentration (M) imes 1/5 imes test tube dilution factor

This dilution was in part 2 This dilution is in part 3

1: Final concentration = original conc. \times 1/5 \times 1/5

2: Final concentration = original conc. \times 1/5 \times 2/5

3: Final concentration = original conc. \times 1/5 \times 3/5

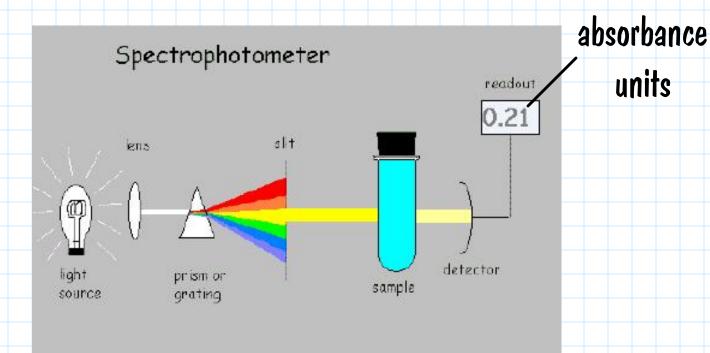
4: Final concentration = original conc. \times 1/5 \times 4/5

5: Final concentration = original conc. \times 1/5 \times 1

Spectrophotometry!

Spectrophotometers are the most widely used analytical instruments in the world except for the analytical balance, and they're about as easy to use as an analytical balance.

"But vat does a spectrophotometer look like?" you are wondering,


"Und how does it vork?"

I'm glad you asked!

Looks like this

Works like this

Anything that is colored has color because it absorbs some wavelength (or wavelengths) of visible light.

Using the spectrophotometer

- 1. Place a cuvette full of deionized water into the instrument.

 This is your blank. Press the button that says O ABS.
- 2. Remove the blank and put in a cuvette containing your first standard. The display will automatically read out the absorbance. Record this value.
- 3. Repeat steps 1 and 2 for each solution.
 - 2 cuvettes to a customer! Reuse the sample cuvette!

How not to screw up this part

- 1) Rinse the cuvette twice with the sample you are about to measure before you put it in the instrument
- 2) Wipe the outside of the cuvette clean using Kim-Wipes. No fingerprints, no wetness on the outside.
- 3) No bubbles in the solution.
- 4) Fill the cuvettes at least 3/4 of the way up.

But what do these absorbance values tell us?

Beer's Law

Beer's Law says that absorbance depends on three factors: molar absorptivity, concentration, and path length.

$$A = \varepsilon cI$$

Sometimes written as $A = \varepsilon bc$

or A = abc

Beer's Law plots

When we plot Absorbance versus Concentration, the slope of the line is equal to ε l. In our case l=1, so the slope of the line is equal to the molar absorptivity for Fe(phen)₃²⁺.

After you have your data

Enter the absorbance and concentration values into Excel.

Plot Absorbance (y-axis) versus concentration (x-axis). Set the y-intercept equal to zero.

You should get a straight line, and the slope of the line is your molar absorptivity, ε , in units of $M^{-1}cm^{-1}$. Have Excel display the equation for the line on the graph.

Next veek

- Dissolve up some crystals
- Convert them to orange complex ion
- Measure absorbance
- Determine concentration using Beer's Law

Quiz Next Week!

Beer's Law

Dilutions

Also Next Week!

Turn in Post-lab 7 next week just like it was a pre-lab.

Quiz This Week!

After today you are 2/3 finished with the Final Exam!

Quiz Next Week!

Covering dilutions and Beer's Law