Part 3. The Ionization Constant of Acetic Acid

Solution: 10 ml of 1.0 M CH₃COOH

Measured: pH **To be determined:** K_a

Calculations: 1. $[H_3O^+] = 10^{-pH} = x$

2. Determine [CH₃COO⁻] and [CH₃COOH] from the following:

3.
$$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]} = \frac{x^2}{(1.0-x)}$$

Solution: 20 ml of 1.0 M NaCH₃COO + 10 ml of 1.0 M CH₃COOH

$$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$$
 (reversible)
 $NaCH_3COO \rightarrow CH_3COO^- + Na^+$ (to completion)

Measured: pH **To be determined:** K_a

Calculations: 1. $[H_3O^+] = 10^{-pH}$

- 2. Determine $[CH_3COO^-]$ in a new volume of 30 ml (dilution problem)
- 3. Determine [CH₃COOH] in a new volume of 30 ml (dilution problem)

4.
$$K_a = \frac{[H_3O^+][CH_3COO^-]}{[CH_3COOH]}$$

Part 4. Buffering Capacity

Solution: 30 ml of DI $H_2O + 4$ ml of 2.0 M HCl

$$HCl + H_2O \rightarrow H_3O^+ + Cl^-$$
 (to completion)

To be determined: pH (calculated)

Calculations: 1. Determine [HCl] in a new volume of 34 ml (dilution problem)

2. $[H_3O^+] = [HC1]$

3. $pH_{calc} = -log [H_3O^+]$

Solution: 30 ml of DI H₂O + 4 ml of 2.0 M NaOH

$$NaOH \rightarrow Na^{+} + OH^{-}$$
 (to completion)

To be determined: pH (calculated)

Calculations: Use the same approach as shown above for the $(H_2O + 2.0 \text{ M HCl})$ solution.

Remember, that $[H_3O^+] \times [OH^-] = 10^{-14}$

Solution: 30 ml of 1.0 M NaCH₃COO + 30 ml of 1.0 M CH₃COOH = 60 ml of the buffer

To be determined: pH (calculated)

Calculations: 1. Determine [CH₃COO⁻] in a new volume of 60 ml (*dilution problem*)

2. Determine [CH₃COOH] in a new volume of 60 ml (dilution problem)

3.
$$pH = pK_a + log \frac{[CH_3COO^-]}{[CH_3COOH]}$$
 Use $K_a = 1.76 \times 10^{-5}$

Solution: 30 ml of the buffer (prepared previously) + 4 ml of 2.0 M HCl

To be determined: pH (calculated)

Calculations: 1. Determine the initial number of moles of CH₃COOH in solution: a

2. Determine the initial number of moles of CH_3COO^- in solution: b

3. Determine the number of moles of HCl added: *x*

4.
$$H_3O^+ + CH_3COO^- \rightarrow CH_3COOH + H_2O$$

$$\begin{array}{ccccc} x & b & a & initial \\ -x & -x & x & change \\ 0 & (b-x) & (a+x) & equilibrium \end{array}$$

5.
$$pH = pK_a + log \frac{moles \text{ of } CH_3COO^-}{moles \text{ of } CH_3COOH} = pK_a + log \frac{(b-x)}{(a+x)}$$
 Use $K_a = 1.76 \times 10^{-5}$

Solution: 30 ml of the buffer (prepared previously) + 4 ml of 2.0 M NaOH

$$OH^- + CH_3COOH \rightarrow CH_3COO^- + H_2O$$

Calculations: Use the same approach as shown above for the (buffer + 2.0 M HCl) solution.