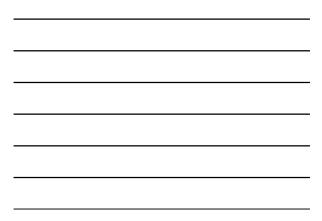


Last Week Made standard solutions from a stock solution Fun with dilutions! Spectrophotometry — Beer's Law

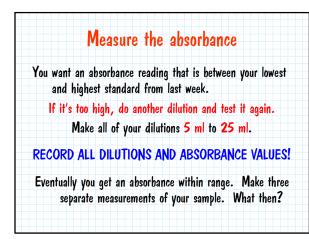
	This week
	Parts 1 and 4:
	Convert our green crystals into an orange solution, Fe(phen)3 ²⁺ , then use a spectrophotometer to measure how much light this solution absorbs at 510 nm.
ι	Ise the molar absorptivity determined from the calibration curve to
	calculate how much ${\sf Fe}({\sf phen})_3^{2+}$ is in our final sample solution.
e	Back-calculate through the sample dilutions to determine how much
	Fe was in the original sample.

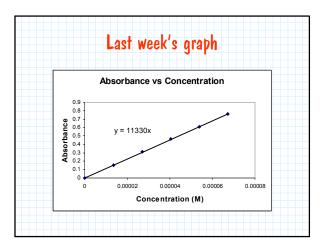
	Lab Procedure, Part 1
1.	Weigh out 0.15 g of green crystals and dissolve in deionized
	${ m H_2O.}$ (Do this right there in the weighing boat.) Transfer
	the dissolved sample to a 25 mL volumetric flask.
2	. Add 8 mL of 6 M H_2SO_4 , and fill to the line with
	deionized water using a disposable pipette.
	Your sample is now dissolved in 25 mL of solution.


Part 1, continued...

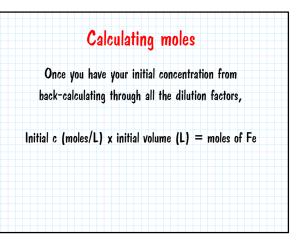
 Pipette 5 mL into a 30 mL beaker, add about 10 mL deionized water, heat and stir.

- Add KMnO₄ dropwise until the solution turns pink. (Around 50-60 drops.) Yellow → colorless → pink.
- 6-7. Transfer the solution to a 25 mL volumetric flask and let it cool.
- 8. There is no step eight.


9. Fill the volumetric flask to the mark using deionized water. The sample has now been diluted 1 to 5 from the original concentration.


	On to Part 4
	Pipette <mark>5 mL</mark> of your sample from part 1.9 into a <mark>25 mL</mark>
- 1	/olumetric flask.
	Add 1 mL of hydroxylamine, NH ₂ OH
	2 mL sodium acetate, and
	8 mL 1,10 phenanthroline
	Fill to the mark with PHENANTHROLINE!
	Let it sit for 20 minutes.
+	The sample has now been diluted 1 to 5 TWICE, or 1 to 25.

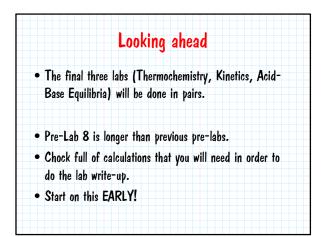
Remember
FILL THE ORANGE SOLUTION TO THE MARK WITH PHENANTHROLINE!
Not with water.
Nicht mit der wasser.
jNo con agua, amigo!
ôn ⊌q∨âc êqâ⊌v∘



	Beer's Law
	A = ɛcl
	$c = A/\epsilon$
	Get some tiny value for c (x 10 ⁻⁵ M)
Th	at's the <u>final concentration</u> after all those dilutions.
But	what was the original concentration in the very first
	25 ml flask?

Dilution calculations					
Going forward	d:				
Initial c x	<u>5</u> x -	5 25 x	5 25 =	Final c	
Going backwa	ırd:				
Final c x -	25 x 2	25 5 X	<u>25</u> =	Initial c	

	Calculating moles
Once yo	u have your initial concentration from
back-calc	ulating through all the dilution factors,
Initial c	x initial volume (L) = moles of Fe



Unknown Summary Sheet

Report moles of Fe per gram of sample

Also report moles of oxalate per gram of sample (final result from Experiment 6)

Also — don't forget calculations for the report that are buried in Part 4 of the procedure (steps 3-9).

