	Experiment 6	
S	nthesis und Analysis of	a
	Magical Green Crystal	
Part Deux:	Oxalate Content Analysis by Redox Titr a Vile Purple Fluid	ation Using
	CH 204 Spring 2007	
	Dr. Brian Anderson	

	But fir	'st	
Last week:			
Synthesis o	^C K _x [Fe _y (C ₂ O ₄) _x]	•zH ₂ O	
Metal comp	lex coordination c	ompounds	
Calculating	limiting reagent,	theoretical yield,	
and perc	ent yield		
This week:			
Oxidation-	Reduction (Redo)	() chemistry	

	Our red	ox react	ion	
	nO4 ⁻ to oxidiza he carbon in tl ate will change	he oxalate i	ons will b	ne oxidized,
MnO ₄ -(aq) +	•		· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	^	xidation	1	· · · · · · · · · · · · · · · · · · ·
	Redu	uction		
H	ley! This reac	tion is not l	balanced!	

Balancing redox reactions

Separate the overall equation into two <u>half-reactions</u>. For each half-reaction: 1. Balance the main atom. 2. Add H₂O to balance O.

3. Add H⁺ to balance H.

4. Balance the charge using electrons.

When you're done, add the two half-reactions and cancel out the electrons.

Let's try a few. To the Doc Cam!

	Reduction half-reaction
The oxidi	zing agent, MnO4 ⁻ , gets reduced to Mn ²⁺
	$MnO_4^-\!\to Mn^{2+} + ???$
Balance Mn	
Balance O	using H ₂ O
Balance H u	ising H ⁺
Ralanca cha	irge using e

The oxidizing agent, MnO ₄ ⁻ , gets reduced to Mn ²⁺ MnO ₄ ⁻ + 8 H ⁺ + 5 e ⁻ → Mn ²⁺ + 4 H ₂ O Balance Mn Balance O using H ₂ O Balance H using H ⁺ Balance charge using e ⁻		Reduction half-reaction solved!
Balance Mn Balance O using H ₂ O Balance H using H+	The o	kidizing agent, MnO4 ⁻ , gets reduced to Mn ²⁺
Balance O using H ₂ O Balance H using H+		$MnO_4^- + 8 H^+ + 5 e^- \rightarrow Mn^{2+} + 4 H_2O$
Balance H using H ⁺	Balance	Mn
	Balance	O using H ₂ O
Balance charge using e	Balance	H using H+
	Balance	charge using e

	Add the two half reactions
	nultiply the equations in order to balance out the trons:
8H⁺ +	$C_2O_4^{2-} \rightarrow 2CO_2 + 2e^- \times 5$ + MnO_4^- + 5e^- \rightarrow Mn ²⁺ + 4H ₂ O \times 2
16H+	$5C_2O_4^{2-} \rightarrow 10CO_2 + 10e^-$ + $2MnO_4^{-} + 10e^- \rightarrow 2Mn^{2+} + 8H_2O$
	pation for the overall reaction is: + $2MnO_4^- + 5C_2O_4^{2-} \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O_2$

Do it the E-Z way instead
Balance the equation in acidic solution,
and if it's supposed to be in basic solution,
just add enough OH ⁻ to both sides
to get rid of all the H+.
Just like this

	$MnO_4^- \rightarrow MnO_2$
Balance O usir	ng H ₂ 0: $MnO_4^- \rightarrow MnO_2 + 2H_2O$
Balance H usin	Ig H ⁺ : $MnO_4^- + 4H^+ \rightarrow MnO_2 + 2H_2O$
Balance charge	e using e-: $MnO_4^- + 3e^- + 4H^+ \rightarrow MnO_2 + 2H_2O$
Add one OH-	for every H+. Add OH ⁻ to both sides!
MnO	$_{4^{-}}$ + 3e ⁻ + 4H ⁺ + 4OH ⁻ \rightarrow MnO ₂ + 2H ₂ O + 4OH ⁻
Combine water	s and delete redundant waters:

- Add the two half-reactions electrons must cancel.
- If necessary, convert acidic solution to basic by adding OH⁻ to both sides and crossing out spectator water molecules.

Today:	Sample prep and three titrations
Land mine	1:1 mixture of ethanol/water means mix them
	er in a beaker <u>BEFORE</u> you pour them in!
	solution is already standardized and ready to go re you record the concentration: 0.0363 M.
Start titrati	ng while sample is heating, don't wait for 70°

Quiz after spring break

Balance redox reaction in acidic solution Redox titration / limiting reagent problems

Review concepts from Experiments 4, 5, and 6.

		E	xpei	rin	1ent	7	-	cle	łi	n tw	ain!			
The	veek	aftei	r spri	ng	break	: T	urn i	n Pi	e-L	ab, d	o par	ts 2	and	3.
	Follo	wing	weel	k:	Turn	in	post-	·lab	7,	do pa	rts 1	and	4.	
Repor	t will	be (due a	one	week	aft	er th	e er	tire	exper	imen	'is c	omple	ete.

