Experiment 6
Synthesis and Analysis of a Complex
Iron Compound
Part Deux: Oxalate Content Analysis by Redox Titration
CH 204 Spring 2006
Dr. Brian Anderson

	But first
Last	week:
S	ynthesis
M	letal complex coordination compounds
0	xidation/Reduction (Redox) reactions
C	alculating theoretical yield and percent yield

Review of Redox Chemistry
Oxidation: Loss of electrons. Oxidation number increases
(gets more positive).
Reduction - Gain of electrons. Oxidation number <u>decreases</u> (moves more negative).
Redox — A chemical reaction in which some atoms are oxidized and others are reduced. <u>Individual atoms</u> within compounds are oxidized or reduced.

	Common Oxidation States	
Hydr	rogen is almost always +1.	
0 in	n elemental hydrogen (H ₂ gas)	
-1 in	metal hydrides such as LiAlH ₄	
Oxyg	gen is almost always — 2 .	
0 in	n elemental oxygen (O ₂ gas)	
	n peroxides such as H-O-O-H	

	Some examples
NaOH —	0 = -2, H = +1, Na = +1 Total = 0
CH4 —	H = +1 EACH, Total = 0, so C = -4
KMnO ₄ —	0 = -2 EACH, K = +1, Total = 0, so Mn = +7
ci0 ₄	0 = -2 EACH, Total = -1, so Cl = +7
CIO3	0 = -2 EACH, Total = -1, so Cl = +5
C102 -	Cl = +3
CIO	Cl = +1
CI	Cl = -1

	Oxidizing Agents
	ng agent is something that oxidizes other chemicals
	efore gets reduced itself. Strong oxidizing agents often
have lot	s of oxygen atoms in them. Common examples include
	$KMnO_4$, H_2O_2 , $K_2Cr_2O_7$
	$MnO_4^- + 5 e^- \rightarrow Mn^{2+}$
	$2H_2O_2 + 2e^- \rightarrow 2H_2O$
	$Cr_2O_7^{2-} + 6e^- \rightarrow 2Cr^{3+}$
	These are NASTY! Nasty nasty nasty!

Reducing Agents

A reducing agent reduces other compounds and therefore gets oxidized itself. Hydrides are commonly used reducing agents, particularly Lithium Aluminum Hydride (LiAIH₄) and Sodium Borohydride (NaBH₄).

		6	But w	vait, th	nere's	moi	re!
٢ł	iose were	e some	e com	mon stre	ong oxid	dizin	g and reducing
	agents,	but u	nder t	he right	circum	stan	ces,
•	Anything	g that	can b	ne reduc	ed can	act	as an oxidizing ager
•	Anything	g that	can b	ne oxidiz	ed can	act	as a reducing agent

	Our redox reaction
	e will use MnO_4^- to oxidize the oxalate ligands surrounding the Fe^{3+} from $C_2O_4^{2-}$ to CO_2 .
La	st week we oxidized Fe $^{2+}$ to Fe $^{3+}$ using hydrogen peroxide (H $_2O_2$) as the oxidizing agent.
	roxide is not a strong enough oxidizer to oxidize the oxalate to CO_2 , but permanganate is.

E

	Reduction half-reaction
The oxidizin	g agent, MnO_4^- , gets reduced to Mn^{2+}
MnO ₄ -+ 5e ⁻	$T \rightarrow Mn^{2+}$ + a whole bunch of oxygens
In acidic sol 8H ⁺ -	ution, + MnO_4^- + 5e ⁻ $\rightarrow Mn^{2+}$ + 4H ₂ O

Add the two half reactions
First multiply the equations in order to balance out the electrons:
$C_2O_4^{2-} \rightarrow 2CO_2 + 2e^- \times 5$ 8H ⁺ + MnO ₄ ⁻ + 5e ⁻ \rightarrow Mn ²⁺ + 4H ₂ O \times 2
$5C_2O_4^{2-} \rightarrow 10CO_2 + 10e^-$ $16H^+ + 2MnO_4^- + 10e^- \rightarrow 2Mn^{2+} + 8H_2O$
The equation for the overall reaction is: $16H^+ + 2MnO_4^- + 5C_2O_4^{2-} \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$

Balancing redox reactions

- Identify which species is being oxidized and which one is being reduced.
- Separate them into half reactions (usually one of the half reactions is trivial to balance).
- Balance the main atom.
- Add H_2O to balance O, then add H^+ to balance H.
- Balance the charge using electrons.
- Add the two half-reactions (cancel out electrons)
- If the reaction takes place in basic solution add OH[−] to both sides to turn H⁺ into H₂O, and then and cross out redundant waters.

	Always balance in acidic solutio
easy	as 1-2-4.
1)	Balance the oxidized/reduced atoms
2)	Balance oxygens using H ₂ O
3)	Balance hydrogens using H+
4)	Balance charge using e-
1)	2HBrO \rightarrow Br ₂
2)	2HBrO \rightarrow Br ₂ + 2H ₂ O
3)	$2HBrO + 2H^+ \longrightarrow Br_2 + 2H_2O$
4)	$2HBrO + 2H^+ + 2e^- \rightarrow Br_2 + 2H_2O$

Oxidation:		Cd	\rightarrow Cd ²⁺ + 2e	∋ -
Reduction:	2HBrO +	2e⁻ + 2H⁺	$\rightarrow Br_2 + 2H_2$	0
Overall Equat		211+ . Co	12+ 1 Dr 1 21	J C
200	U + Cu +		¹²⁺ + Br ₂ + 2H	1 ₂ C

Do it the E-Z way instead
Balance the equation in acidic solution,
and if it's supposed to be in basic solution,
just add enough OH ⁻ to both sides
to get rid of all the H+.
Just like this

to manganese (IV) oxide in basic solution: $nO_4^{-2} \rightarrow MnO_2$
$nO_4^{-2} \rightarrow MnO_2$
$_{4}^{-} \rightarrow MnO_{2} + 2H_{2}O$
$P_4^- + 4H^+ \rightarrow MnO_2 + 2H_2O$
$D_4^- + 3e^- + 4H^+ \rightarrow MnO_2 + 2H_2O$
OH- to both sides!
$I^{+} + 4OH^{-} \rightarrow MnO_{2} + 2H_{2}O + 4OH^{-}$
ant waters:
$3e^{-} + 2H_2O \rightarrow MnO_2 + 4OH^{-}$

	Balancing redox reactions review
•	Separate the reactants into half reactions (usually one of the
	half reactions is trivial to balance).
•	Balance the main atom.
•	Balance the half-reactions using H_2O to balance O, then use H^+
	to balance H. Balance the charge with electrons.
•	Add the two half-reactions — electrons must cancel.
•	If necessary, convert acidic solution to basic by adding OH- to
	both sides and crossing out spectator water molecules.

Today	y: Sample prep and three titrations
	ine! 1:1 mixture of ethanol/water means mix them gether in a beaker BEFORE you pour them in!
The KMn	O_4 solution is already standardized and ready to go. Make sure you record the concentration!
Actual KMr	nO ₄ concentration is about 0.035 M, not 0.02 M. Take 60 ml instead of 80 ml.