Experiment 6 Synthesis and Analysis of a Complex Iron Compound

Part Deux: Oxalate Content Analysis by Redox Titration

CH 204 Spring 2006 Dr. Brian Anderson

But first...

Last week: Synthesis Metal complex coordination compounds Oxidation/Reduction (Redox) reactions Calculating theoretical yield and percent yield

Review of Redox Chemistry

Oxidation: Loss of electrons. Oxidation number increases (gets more positive).

Reduction - Gain of electrons. Oxidation number decreases (moves more negative).

Redox — A chemical reaction in which some atoms are oxidized and others are reduced. Individual atoms within compounds are oxidized or reduced.

What is an oxidation number?

- A method for keeping track of the movement of electrons in redox reactions. It's like treating all compounds as if they're ionic compounds, even when we know they're not.
- Each individual atom is assigned an oxidation number according to a few simple rules:
- Atoms in their elemental state have an oxidation number of zero.
- Monatomic ions have an oxidation state equal to the charge on the ion.
- All the oxidations states in a neutral molecule add up to zero.
- All the oxidation states in an ion add up to the charge on the ion.

Common Oxidation States

- Hydrogen is almost always +1.
 - O in elemental hydrogen (H₂ gas)
 - -1 in metal hydrides such as LiAlH₄
- Oxygen is almost always -2.
 - O in elemental oxygen (O₂ gas)
 - -1 in peroxides such as H-O-O-H

Some examples

 $CH_4 - H = +1 EACH$, Total = 0, so C = -4

 $KMnO_4 - O = -2 EACH, K = +1, Total = 0, so Mn = +7$

Oxidizing Agents

An oxidizing agent is something that oxidizes other chemicals -and therefore gets reduced itself. Strong oxidizing agents often have lots of oxygen atoms in them. Common examples include KMnO₄, H₂O₂, K₂Cr₂O₇

 $MnO_4^- + 5 e^- \rightarrow Mn^{2+}$

 $2H_2O_2 + 2e^- \rightarrow 2H_2O$

 $Cr_2O_7^{2-} + 6e^- \rightarrow 2Cr^{3+}$

These are NASTY! Nasty nasty nasty!

Reducing Agents

A reducing agent reduces other compounds and therefore gets oxidized itself. Hydrides are commonly used reducing agents, particularly Lithium Aluminum Hydride (LiAIH₄) and Sodium Borohydride (NaBH₄).

But wait, there's more!

Those were some common strong oxidizing and reducing agents, but under the right circumstances,

- Anything that can be reduced can act as an oxidizing agent
- Anything that can be oxidized can act as a reducing agent

Our redox reaction

We will use MnO_4^- to oxidize the oxalate ligands surrounding the Fe³⁺ from $C_2O_4^{2-}$ to CO_2 .

Last week we oxidized Fe^{2+} to Fe^{3+} using hydrogen peroxide (H_2O_2) as the oxidizing agent.

Peroxide is not a strong enough oxidizer to oxidize the oxalate to CO_2 , but permanganate is.

Oxidation half-reaction

Oxidation of $C_2O_4^{2-}$ to CO_2 is simple enough:

(Remember, half-reactions do not include the other reactant)

$$C_2O_4^{2-} \rightarrow 2CO_2 + 2e^{-1}$$

Reduction half-reaction

The oxidizing agent, MnO_4^- , gets reduced to Mn^{2+}

 $MnO_4^- + 5e^- \rightarrow Mn^{2+} + a$ whole bunch of oxygens

In acidic solution,

 $8H^+ + MnO_4^- + 5e^- \rightarrow Mn^{2+} + 4H_2O$

Add the two half reactions

First multiply the equations in order to balance out the electrons:

 $C_2O_4^{2-} \rightarrow 2CO_2 + 2e^- \times 5$ 8H⁺ + MnO₄⁻ + 5e⁻ \rightarrow Mn²⁺ + 4H₂O \times 2

 $5C_2O_4^{2-} \rightarrow 10CO_2 + 10e^{-}$ 16H⁺ + 2MnO₄⁻ + 10e⁻ $\rightarrow 2Mn^{2+} + 8H_2O$

The equation for the overall reaction is: $16H^+ + 2MnO_4^- + 5C_2O_4^{2-} \rightarrow 10CO_2 + 2Mn^{2+} + 8H_2O$

Balancing redox reactions

- Identify which species is being oxidized and which one is being reduced.
- Separate them into half reactions (usually one of the half reactions is trivial to balance).
- Balance the main atom.
- Add H_2O to balance O, then add H⁺ to balance H.
- Balance the charge using electrons.
- Add the two half-reactions (cancel out electrons)
- If the reaction takes place in basic solution add OH^- to both sides to turn H^+ into H_2O , and then and cross out redundant waters.

Balance this redox reaction

HBrO + Cd \rightarrow Br₂ + Cd²⁺

Oxidation: Cd \rightarrow Cd²⁺ + 2e⁻

Reduction: HBrO + some electrons \rightarrow Br₂

Always balance in acidic solution

As easy as 1-2-4.

- 1) Balance the oxidized/reduced atoms
- 2) Balance oxygens using H₂O
- 3) Balance hydrogens using H+
- 4) Balance charge using e-
- 1) 2HBrO \rightarrow Br₂ 2) 2HBrO \rightarrow Br₂ + 2H₂O
- 3) $2HBrO + 2H^+ \rightarrow Br_2 + 2H_2O$ 4) $2HBrO + 2H^+ + 2e^- \rightarrow Br_2 + 2H_2O$

Add the two half-reactions

Oxidation: $Cd \rightarrow Cd^{2+} + 2e^{-}$ Reduction: $2HBrO + 2e^{-} + 2H^{+} \rightarrow Br_{2} + 2H_{2}O$

Overall Equation:

$2HBrO + Cd + 2H^+ \rightarrow Cd^{2+} + Br_2 + 2H_2O$

What if the solution is basic?

allu

ther

H to the

Here's what Whitten, Davis, Peck, and Stanley say:

To balance in a basic solution, for each Oneded

(1) Add $try OH^-$ to the cide needing

dd

The

for

for a set in did, Add *one* r₂) is the side n , ling H

(2) Add one OH^- to the other side.

Here's what the new book suggests

"In basic solution balance O by sin H_2O ; nen balance H by adding H_2O the side of each L F reaction that needs H and adding OH to the other sia. "When we add . . . OH^- . . . \rightarrow . . . H_2O . . . to a half-reaction, we are effectively adding one H atom to the right. When we add, $\therefore \frac{1}{29} \cdot \cdots \rightarrow \ldots \circ OH^{-1}$. We are effectingly using $c \cdot A$ H at to the left. Note that the H₂O molecule is double or each the needed."

Do it the E-Z way instead

Balance the equation in acidic solution, and if it's supposed to be in basic solution, just add enough OH⁻ to both sides to get rid of all the H⁺.

Just like this...

Permanagante is reduced to manganese (IV) oxide in basic solution:

$MnO_4^{-2} \rightarrow MnO_2$

Balance O using H₂O: $MnO_4^- \rightarrow MnO_2 + 2H_2O$

Balance H using H⁺: $MnO_4^- + 4H^+ \rightarrow MnO_2 + 2H_2O$

Balance charge using e-: $MnO_4^- + 3e^- + 4H^+ \rightarrow MnO_2 + 2H_2O$

Add one OH^- for every H+. Add OH^- to both sides!

 $MnO_4^{-} + 3e^{-} + 4H^{+} + 4OH^{-} \rightarrow MnO_2 + 2H_2O + 4OH^{-}$

Combine waters and delete redundant waters:

 $MnO_4^- + 3e^- + 2H_2O \rightarrow MnO_2 + 4OH^-$

Balancing redox reactions review

- Separate the reactants into half reactions (usually one of the half reactions is trivial to balance).
- Balance the main atom.
- Balance the half-reactions using H₂O to balance O, then use H⁺ to balance H. Balance the charge with electrons.
- Add the two half-reactions electrons must cancel.
- If necessary, convert acidic solution to basic by adding OH⁻ to both sides and crossing out spectator water molecules.

Today: Sample prep and three titrations

Land mine! 1:1 mixture of ethanol/water means mix them together in a beaker BEFORE you pour them in!

The KMnO₄ solution is already standardized and ready to go. Make sure you record the concentration!

Actual $KMnO_4$ concentration is about 0.035 M, not 0.02 M.

Take 60 ml instead of 80 ml.