Part 3. Standard Iron Solution Calculations

Dilution calculations: $M_1V_1 = M_2V_2$,

where M_1 and M_2 are the molarities of the original concentrated and the final dilute solutions and V_1 and V_2 are the volumes of the original concentrated and the final dilute solutions

Calculations: 1. Convert g/L into a mole/L concentration for the standard Fe^{2+} solution

2. Calculate the molarity of the stock $Fe(phen)_3^{2+}$ solution prepared from the standard Fe^{2+} solution using the stoichiometry of the following equation (note that 1,10-phenanthroline is used in excess in this reaction):

 $\operatorname{Fe}^{2+}(aq) + 3 \operatorname{phen}(aq) \rightarrow \operatorname{Fe}(\operatorname{phen})_3^{2+}(aq)$

3. Calculate the molarities of the five standard $\text{Fe}(\text{phen})_3^{2+}$ solutions prepared from the stock $\text{Fe}(\text{phen})_3^{2+}$ solution (*dilution calculations*)

Part 4. Iron Content Determination by Visible Spectrophotometry

Beer's law: $A = \varepsilon l c$ Known: Absorbance of the Fe(phen)₃²⁺ sample, A Molar absorptivity for Fe(phen)₃²⁺ at 510 nm, ε (M⁻¹cm⁻¹) Dilution factors Pathlength, l = 1 cm Mass of the complex iron sample analyzed (g)

To be determined: Moles of Fe^{3+} per gram of sample (mole/g)

Calculations: 1. M (Fe(phen)₃²⁺) = $\frac{A}{\varepsilon l}$ (mole/L)

- 2. Total dilution factor = $5 \times 5 \times X$, where *X* is your final dilution
- 3. $M_{\text{original}} (\text{Fe}^{3+}) = M (\text{Fe}(\text{phen})_3^{2+}) \times \text{Total dilution factor}$
- 4. In 25 ml of solution: moles $\text{Fe}^{3+} = M_{\text{original}} (\text{Fe}^{3+}) \times 0.025 \text{ L}$

5. Moles
$$\operatorname{Fe}^{3+}/g$$
 sample = $\frac{\operatorname{moles} \operatorname{Fe}^{3+}}{\operatorname{mass of sample}(g)}$

K_xFe_y(C₂O₄)_x·zH₂O Molecular Formula Determination

Known: Moles of $C_2O_4^{2-}$ per gram of sample (mole/g sample) Moles of K⁺ per gram of sample (mole/g sample) Moles of Fe³⁺ per gram of sample (mole/g sample) y = 1 **To be determined:** x and z

Calculations: 1.
$$\frac{x}{y} = \frac{\text{moles of } C_2 O_4^{2^-} / \text{g sample}}{\text{moles of } Fe^{3^+} / \text{g sample}} \implies x - ?$$

2.
$$g \text{ Fe}^{3^+}/\text{g sample} = \text{moles } Fe^{3^+}/\text{g sample} \times \text{MW} (\text{Fe})$$

3.
$$g C_2 O_4^{2^-}/\text{g sample} = \text{moles } C_2 O_4^{2^-}/\text{g sample} \times \text{MW} (C_2 O_4^{2^-})$$

4.
$$g \text{ K}^+/\text{g sample} = \text{moles } \text{K}^+/\text{g sample} \times \text{MW} (\text{K})$$

5.
$$g \text{ H}_2 \text{O}/\text{g sample} = 1.000 \text{ g} - g \text{ Fe}^{3^+}/\text{g sample} - g C_2 O_4^{2^-}/\text{g sample} - g \text{ K}^+/\text{g sample}$$

6.
$$\text{mole } \text{H}_2 \text{O}/\text{g sample} = \frac{g \text{ H}_2 \text{O}/\text{g sample}}{\text{MW} (\text{H}_2 \text{O})}$$

7.
$$\frac{z}{y} = \frac{\text{moles of } \text{H}_2 \text{O}/\text{g sample}}{\text{moles of } \text{Fe}^{3^+}/\text{g sample}} \implies z - ?$$

Determination of the Theoretical Yield and Percent Yield of K_xFe_v(C₂O₄)_x·zH₂O

Chemistry involved:

$$Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O + H_2C_2O_4 \rightarrow FeC_2O_4 \cdot 2H_2O + (NH_4)_2SO_4 + H_2SO_4 + 4H_2O$$
(1)

$$a \operatorname{FeC}_{2}O_{4} \cdot 2H_{2}O + b H_{2}C_{2}O_{4} + c H_{2}O_{2} + d K_{2}C_{2}O_{4} \rightarrow e K_{x}[\operatorname{Fe}_{y}(C_{2}O_{4})_{x}] \cdot zH_{2}O$$

$$\tag{2}$$

Note: Equation (2) has to be balanced before you start working on these calculations.

Known:Actual yield of the product (g)
Mass of the starting material, $Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O(g)$
Moles of $FeC_2O_4 \cdot 2H_2O$, produced in reaction (1) and used as a starting material in
reaction (2). See Post-lab 5, question 5 for reference

Assume $FeC_2O_4 \cdot 2H_2O$ to be the limiting reactant in reaction (2)

To be determined: Theoretical yield (g) and Percent yield (%)

Calculations: 1. Determine moles of $K_x[Fe_y(C_2O_4)_x]\cdot zH_2O$ from moles of $FeC_2O_4\cdot 2H_2O$ using the stoichiometry of equation (2)*

2. Theoretical yield (g) = Moles $K_x[Fe_y(C_2O_4)_x] \cdot zH_2O \times MW (K_x[Fe_y(C_2O_4)_x] \cdot zH_2O)$

3. Percent yield =
$$\frac{\text{actual yield (g)}}{\text{theoretical yield (g)}} \times 100\%$$

^{*}If you are unable to balance equation (2) due to the erroneous molecular formula determination, leave equation (2) unbalanced and use a 1-to-1 molar ratio of $FeC_2O_4 \cdot 2H_2O$ to $K_x[Fe_y(C_2O_4)_x] \cdot zH_2O$ at this step.