Part 2. Standard Iron Solution Calculations

Dilution calculations: $V_1M_1 = V_2M_2$,

where M_1 and M_2 are the molarities of the original concentrated and the final dilute solutions and V_1 and V_2 are the volumes of the original concentrated and the final dilute solutions

Calculations: 1. Convert g/L into a mole/L concentration for the standard Fe^{2+} solution

2. Calculate the molarity of the stock $Fe(phen)_3^{2+}$ solution prepared from the standard Fe^{2+} solution using the stoichiometry of the following equation:

 $\operatorname{Fe}^{2+}(aq) + 3 \operatorname{phen}(aq) \rightarrow \operatorname{Fe}(\operatorname{phen})_3^{2+}(aq)$

3. Calculate the molarities of the five standard $\text{Fe}(\text{phen})_3^{2+}$ solutions prepared from the stock $\text{Fe}(\text{phen})_3^{2+}$ solution

Part 4. Iron Content Determination by Visible Spectrophotometry

Beer's law: $A = \varepsilon l c$

Known: Absorbance of the Fe(phen)₃²⁺ sample, *A* Molar absorptivity for Fe(phen)₃²⁺ at 510 nm, ε (M⁻¹cm⁻¹) Dilution factors Pathlength, *l* = 1 cm Mass of the complex iron sample (g)

Moles of Fe^{3+} per gram of sample (mole/g) - ?

- **Calculations:** 1. M (Fe(phen)₃²⁺) = $\frac{A}{\epsilon l}$ (mole/L)
 - 2. Total dilution factor = $5 \times 5 \times X$, where *X* is your final dilution
 - 3. $M_{\text{original}} (\text{Fe}^{3+}) = M (\text{Fe}(\text{phen})_3^{2+}) \times \text{Total dilution factor}$
 - 4. In 25 ml of solution: moles $\text{Fe}^{3+} = M_{\text{original}} (\text{Fe}^{3+}) \times 0.025 \text{ L}$
 - 5. Moles Fe^{3+}/g sample = $\frac{\operatorname{moles} \operatorname{Fe}^{3+}}{\operatorname{mass of sample}(g)}$

K_xFe_y(C₂O₄)_x·zH₂O Molecular Formula Determination

Known: Moles of $C_2O_4^{2-}$ per gram of sample (mole/g sample) Moles of K⁺ per gram of sample (mole/g sample) Moles of Fe³⁺ per gram of sample (mole/g sample) y = 1x - ? and z - ?

Calculations: 1.
$$C_2 O_4^{2-}$$
: Fe³⁺ = $\frac{\text{moles of } C_2 O_4^{2-} / \text{g sample}}{\text{moles of Fe}^{3+} / \text{g sample}} \implies x-?$

- 2. g Fe³⁺/g sample = moles Fe³⁺/g sample \times MW (Fe)
- 3. g $C_2O_4^{2-}/g$ sample = moles $C_2O_4^{2-}/g$ sample × MW ($C_2O_4^{2-}$)
- 4. g K⁺/g sample = moles K⁺/g sample \times MW (K)
- 5. $g H_2O/g \text{ sample} = 1.000 \text{ g} g \text{ Fe}^{3+}/g \text{ sample} g C_2O_4^{2-}/g \text{ sample} g \text{ K}^+/g \text{ sample}$

6. mole H₂O/g sample =
$$\frac{g H_2O/g \text{ sample}}{MW (H_2O)}$$

7.
$$H_2O: Fe^{3+} = \frac{\text{moles of } H_2O/g \text{ sample}}{\text{moles of } Fe^{3+}/g \text{ sample}} \implies z-?$$

Determination of the Theoretical Yield and Percent Yield of K_xFe_y(C₂O₄)_x·zH₂O

Chemistry involved:

$$Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O + H_2C_2O_4 \rightarrow FeC_2O_4 \cdot 2H_2O + (NH_4)_2SO_4 + H_2SO_4 + 4H_2O$$
(1)

$$a \operatorname{FeC}_{2}O_{4} \cdot 2H_{2}O + b H_{2}C_{2}O_{4} + c H_{2}O_{2} + d K_{2}C_{2}O_{4} \rightarrow e K_{x}[\operatorname{Fe}_{v}(C_{2}O_{4})_{x}] \cdot zH_{2}O$$

$$(2)$$

Note: Equation (2) has to be balanced before you start working on these calculations.

Known:	Actual product yield (g) Mass of the starting material, $Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O(g)$
	theoretical yield $(g) - ?$ and percent yield $(\%) - ?$
Calculations:	1. Moles $Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O = \frac{mass of Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O(g)}{MW(Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O)}$

- 2. Moles $FeC_2O_4 \cdot 2H_2O = Moles Fe(NH_4)_2(SO_4)_2 \cdot 6H_2O$ (determined from the stoichiometry of equation 1)
 - 3. Determine moles of $K_x[Fe_y(C_2O_4)_x]\cdot zH_2O$ from moles of $FeC_2O_4\cdot 2H_2O$ using stoichiometry of equation (2)*
 - 4. Theoretical yield (g) = Moles $K_x[Fe_y(C_2O_4)_x] \cdot zH_2O \times MW$ ($K_x[Fe_y(C_2O_4)_x] \cdot zH_2O$)

5. Percent yield =
$$\frac{\text{actual yield (g)}}{\text{theoretical yield (g)}} \times 100\%$$

^{*} If you were unable to balance equation (2) due to the erroneous molecular formula determination, use a 1-to-1 molar ratio of $FeC_2O_4 \cdot 2H_2O$ to $K_x[Fe_y(C_2O_4)_x] \cdot zH_2O$ to complete the theoretical yield calculation.