Experiment 6 Synthesis and Analysis of a Magical Green Crystal

Part Deux: Oxalate Content Analysis by Redox Titration Using

a Vile Purple Fluid

CH 204 Fall 2006

Dr. Brian Anderson

But first...

Last week:

Synthesis

Metal complex coordination compounds

Oxidation/Reduction (Redox) reactions

Calculating limiting reagent, theoretical yield,

and percent yield

This week:

Oxidation-Reduction (Redox) chemistry

What is redox chemistry?

Moving electrons between different atoms:

$$Cu^{2+}_{(aq)} + Zn_{(s)} \longrightarrow Cu_{(s)} + Zn^{2+}_{(aq)}$$

$$Cu^{2+}_{(aq)} + 2e^{-} \longrightarrow Cu_{(s)}$$

Cu²⁺ gains electrons. Cu²⁺ is REDUCED.

$$Zn_{(s)} \longrightarrow 2e^- + Zn^{2+}_{(aq)}$$

Zn_(s) loses electrons. Zn_(s) is OXIDIZED.

Our redox reaction

We will use MnO_4 - to oxidize the oxalate ligands surrounding the Fe^3 +. The carbon in the oxalate ions will be oxidized, and the oxalate will change from $C_2O_4^2$ - to $CO_2(g)$.

$$MnO_4^{-}_{(aq)} + C_2O_4^{2-}_{(aq)} \longrightarrow CO_{2^{(g)}} + Mn^{2+}_{(aq)}$$

Balancing redox reactions

Separate the overall equation into two half-reactions. For each half-reaction:

- 1. Balance the main atom.
- 2. Add H₂O to balance O.
- 3. Add H+ to balance H.
- 4. Balance the charge using electrons.

When you're done, add the two half-reactions and cancel out the electrons.

Let's go to the doc cam and try one...

Oxidation half-reaction

Oxidation of $C_2O_4^{2-}$ to CO_2 is simple enough:

(Remember, half-reactions do not include the other reactant)

$$C_2O_4^{2-} \rightarrow 2CO_2 + 2e^{-}$$

Reduction half-reaction

The oxidizing agent, MnO_4^- , gets reduced to Mn^{2+}

 $MnO_4^- \rightarrow Mn^{2+} + ???$

Balance Mn

Balance O using H₂O

Balance H using H⁺

Balance charge using e-

Add the two half reactions

First multiply the equations in order to balance out the electrons:

$$C_2O_4^{2-} \rightarrow 2CO_2 + 2e^- \times 5$$

8H⁺ + MnO₄⁻ + 5e⁻ \rightarrow Mn²⁺ + 4H₂O \times 2

$$5C_2O_4^{2-} \rightarrow 10CO_2 + 10e^-$$

 $16H^+ + 2MnO_4^- + 10e^- \rightarrow 2Mn^{2+} + 8H_2O$

The equation for the overall reaction is:

$$16H^{+} + 2MnO_{4}^{-} + 5C_{2}O_{4}^{2-} \rightarrow 10CO_{2} + 2Mn^{2+} + 8H_{2}O_{2}$$

Always balance in acidic solution

As easy as 1-2-4.

- 1) Balance the oxidized/reduced atoms
- 2) Balance oxygens using H₂O
- 3) Balance hydrogens using H+
- 4) Balance charge using e-

What if the solution is basic?

Here's what Whitten, Davis, Peck, and Stanley say:

To balance in a basic solution, for each O needed

(1) Add two OH to the side needing O

and

(2) Add one H₂O to the other side

Then, for each H needed,

(1) Add one H₂O to the side needing H

and

(2) Add one OH to the other side.

Here's what the current book suggests

"In basic solution, balance O by using H_2O ; then balance H by adding H_2O to the side of each half reaction that needs H and adding OH^- to the other side.

"When we add . . . OH^- . . . \rightarrow . . . H_2O . . . to a half-reaction, we are effectively adding one H atom to the right. When we add . . . H_2O . . . \rightarrow . . . OH^- . . . We are effectively adding one H atom to the left. Note that one H_2O molecule is added for each H atom needed."

Do it the E-Z way instead

Balance the equation in acidic solution, and if it's supposed to be in basic solution, just add enough OH⁻ to both sides to get rid of all the H⁺.

Just like this...

Permanagante is reduced to manganese (IV) oxide in basic solution:

$$MnO_4^- \rightarrow MnO_2$$

Balance 0 using H_20 : $MnO_4^- \rightarrow MnO_2 + 2H_2O$

Balance H using H+: $MnO_4^- + 4H^+ \rightarrow MnO_2 + 2H_2O$

Balance charge using e-: $MnO_4^- + 3e^- + 4H^+ \rightarrow MnO_2 + 2H_2O$

Add one OH for every H+. Add OH to both sides!

$$MnO_4^- + 3e^- + 4H^+ + 4OH^- \rightarrow MnO_2 + 2H_2O + 4OH^-$$

Combine waters and delete redundant waters:

$$MnO_4^- + 3e^- + 2H_2O \rightarrow MnO_2 + 4OH^-$$

Balancing redox reactions review

- Separate the reactants into half reactions.
- Balance the main atom.
- Balance the half-reactions using H₂O to balance O, then use H⁺ to balance H. Balance the charge with electrons.
- Add the two half-reactions electrons must cancel.
- If necessary, convert acidic solution to basic by adding OH⁻ to both sides and crossing out spectator water molecules.

Today: Sample prep and three titrations

Land mine. 1:1 mixture of ethanol/water means mix them together in a beaker BEFORE you pour them in!

The KMnO₄ solution is already standardized and ready to go. Make sure you record the concentration: 0.0377 M.

Balance redox reaction

Balance redox reaction in acidic solution

Question about Experiment 6 lab procedure