Experiment 5

Synthesis and Analysis of a Really Weird and Curiously Green Iron Compound

Part 1: Synthesis

CH 204 Fall 2006 Dr. Brian Anderson

Last Week

Acid/Base titration

Standardizing a solution

moles H+ = moles OH-

Calculating moles by grams and Molarity x Volume

Three-week experimental adventure quest!

This week: Synthesis of a potassium oxalatoferrate salt. $K_x[Fe_y(C_2O_4)_x]^*zH_2O$

Starting material \longrightarrow \longrightarrow \longrightarrow Product

"Precursors", "Intermediate products"

Next two weeks: Qualitative identification of the compound through quantitative analysis of oxalate and iron.

Coordinate Covalent Bonds

Coordinate covalent bond: two shared electrons in a bond, but both electrons come from the same atom.

Our compound will have coordinate covalent bonds between the central iron ion and the oxygen atoms in oxalate.

What is potassium oxalatoferrate?

Ova-who?

An ionic crystal with a big, covalently-bound anion.

Procedure Overview

- Dissolve an Fe²⁺ salt in water and add oxalate to precipitate the iron as Iron (II) Oxalate solid.
- Oxidize the iron to Fe³⁺ in the presence of excess oxalate. The
 precipitate will dissolve as the complex ion forms in solution.
- Precipitate the iron complex ion as the potassium salt by adding ethanol to the mix.

A sneak peek at redox half-reactions

$$Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$$

Reduction half reaction:

$$H_2O_2 + 2 H^+ + 2 e^- \longrightarrow 2 H_2O$$

Add the two halves:

$$2~{\rm Fe^{2+}} + {\rm H_2O_2} + 2~{\rm H^+} \longrightarrow {\rm Fe^{3+}} + 2~{\rm H_2O}$$

Grading this lab

- No real data to speak of, so not the usual lab report
- Discussion questions count for more

WARNING!

Follow lab directions carefully or there will be no green crystalline delight for you!

(And this will make you cry.)

Do NOT overheat solutions in the lab today!

Potassium oxalate ≠ Oxalic acid!

If crystals don't form in the end, add another

10 ml of ice-cold ethanol.

Look at the post-lab problems. Be able to calculate: Limiting reagent Theoretical yield Percent yield	What's going to be on the quiz next week?
calculate: Limiting reagent Theoretical yield	
Theoretical yield	
	Limiting reagent
Percent yield	Theoretical yield
	Percent yield