





## But first...

A word or two about significant digits...

...three words, actually.

-------





Every data point is an estimate! But how good of an estimate is it?

VV

N N N

V V V

If we don't know the true value, how do we know how much err there is in our measurement? how do we know how much error

# Ways of Deter Experimenta For a single reading: Precision of the eq Tolerance of the gl For many readings: Statistics! This is what we're gonna do **Ways of Determining Experimental Error**

**Precision of the equipment** 

Tolerance of the glassware

This is what we're gonna do in lab today.











............. ... if these numbers are

1

V V V

- experimental data, there is some
- amount of random error
- "hidden" in each one of them.

How much random error is there in this data?

## To find the hidden error

To find the hidden er Calculate the standard deviation: 1.0593 1.1676 1.0909 1.0438 1.1 1.0593 1.1676 1.0909 1.0438 1.1305

=stdeva(1.0593, 1.1676, 1.0909, 1.0438, 1.1305) = 0.050954.

Round it to ONE significant digit: 0.05.





## **Calculate, round, repeat**

We'll use this same procedure to determine random error and significant digits *six times* in Experiment 1.

V

And speaking of Experiment 1...



## **Two-Part Lab**

AAA

V

...........

.....

- Measure the mass of 5 mL of sample using the analytical balance and three different types of glassware (pipette, burette, and graduated cylinder).
- · Calculate density. Total of six data points.
- Enter your results into the spreadsheet on the computer nearest the printer, and use all the class data in your report.

## **Two-Part Lab**

Part Two: • Measure y and measure analytical • Do NOT cal Measure your assigned volume using a burette, and measure the mass of the sample on the analytical balance.

• Do NOT calculate density.

Enter your mass and volume measurements into the spreadsheet on the computer nearest the door, and use all the class data in your report.

## **Important!**

You will need all three graphs:
Part One:

Density chart and graph comparidifferent methods (includes avera and standard deviation for each part Two:

Mass vs volume graph for Coke
Mass vs volume graph for Diet Compariditation 1 - Density chart and graph comparing different methods (includes average and standard deviation for each method).

- 3 Mass vs volume graph for Diet Coke



A A A A 1

...........

....

V

If you don't like it because it's widely scattered, you can't just toss it, you have to apply the Q-test (see the appendix of the lab manual).

## Interpolation

In order to calculate the density of water at the same temperature as your Coke or Diet Coke sample, you will have to **interpolate** between the density values in the table on page 7 of the notebook.

To the Doc Cam!

### **Final comments**

Type with your fingerds, not witjh youpr thumbds.

**Beakers are not volumetric!** 

Remember to rinse your burette and put it away.

